Six novel NPC1 mutations in Chinese patients with Niemann-Pick disease type C.
نویسندگان
چکیده
In patients with Niemann-Pick disease type C (NPC), an autosomal recessive lipid storage disorder, neurodegeneration can occur in early life. Vertical ophthalmoplegia and extrapyramidal signs may be seen. Cholestatic jaundice and hepatosplenomegaly occur frequently in patients with early onset disease, with bone marrow biopsies showing diffuse infiltration of foamy histiocytes. Cholesterol esterification in skin fibroblasts is reduced, resulting in intracellular accumulation of cholesterol. NPC1 mutations are responsible for the disease in approximately 95% of patients. NPC1 encodes a 1278 amino acid protein which contains 13 transmembrane domains. Over 130 mutations have been identified in NPC1, with over a third present within an NPC1 specific cysteine-rich domain positioned in a large extracellular loop. It has been proposed that the defect in cholesterol homoeostasis is the cause of neuronal apoptosis, but the precise role of the NPC1 protein and the functional implications of its mutations remain unknown. Although NPC is routinely diagnosed by biochemical analysis, identification of molecular defects helps confirm the diagnosis and enables family studies, and rapid, accurate prenatal diagnosis. This report describe the analysis of the NPC1 gene in five Taiwanese/Chinese patients with NPC. Six novel NPC1 mutations (N968S, G1015V, G1034R, V1212L, S738Stop, and I635fs) were identified of which three are missense mutations located in the cysteine-rich domain. These are the first NPC1 mutations reported from Chinese patients with NPC.
منابع مشابه
Aberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease
Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...
متن کاملThe National Niemann-Pick Type C1 Disease Database: correlation of lipid profiles, mutations, and biochemical phenotypes.
Niemann-Pick type C1 disease (NPC1) is an autosomal recessive lysosomal storage disorder characterized by neonatal jaundice, hepatosplenomegaly, and progressive neurodegeneration. The present study provides the lipid profiles, mutations, and corresponding associations with the biochemical phenotype obtained from NPC1 patients who participated in the National NPC1 Disease Database. Lipid profile...
متن کاملDiagnosis of Niemann-Pick disease type C with 7-ketocholesterol screening followed by NPC1/NPC2 gene mutation confirmation in Chinese patients
BACKGROUND It has been reported that oxidation product of cholesterol, 7-ketocholesterol, increases in plasma of patients with NP-C. Previously, we established a rapid test to determine the plasma 7-ketocholesterol level and found it elevated significantly in patients with acid sphingomyelinase deficient NPD and NP-C disease. METHODS Individuals randomly referred to our outpatient clinics in ...
متن کاملDataset in support of the generation of Niemann-Pick disease Type C1 patient-specific iPS cell lines carrying the novel NPC1 mutation c.1180T>C or the prevalent c.3182T>C mutation – Analysis of pluripotency and neuronal differentiation
Data presented in this article demonstrate the generation and characterization of two novel Niemann-Pick disease Type C1 (NPC1) patient-specific induced pluripotent stem cell (iPSC) lines, related to the research article Trilck et al. (Diversity of Glycosphingolipid GM2 and Cholesterol Accumulation in NPC1 Patient-Specific iPSC-Derived Neurons; Brain Res.; 2017; 1657:52-61. doi: 10.1016/j.brain...
متن کاملCharacterisation of two deletions involving NPC1 and flanking genes in Niemann-Pick type C disease patients.
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal disorder characterised by the accumulation of a complex pattern of lipids in the lysosomal-late endosomal system. More than 300 disease-causing mutations have been identified so far in the NPC1 and NPC2 genes, including indel, missense, nonsense and splicing mutations. Only one genomic deletion, of more than 23 kb, has been p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurology, neurosurgery, and psychiatry
دوره 76 4 شماره
صفحات -
تاریخ انتشار 2005